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Abstract—The integral solutions for a symmetrical crack propagating at a varying speed in an elastic solid
under the action of an arbitrary symmetrical crack pressure are obtained as sums of associated static solutions
and stress-wave integrals. Two special cases are studied in detail. For the case of a symmetrical crack running
at a constant speed under a uniform pressure, exact dynamic solutions for crack shape and stress distribution
with singularities in the crack plane are obtained in closed forms that are easily comparable to associated static
solutions. The difference between dynamic and static solutions for quantities such as crack shape and stress
intensity factors is governed by dynamic correction factors which are nondimensional functions of Poisson’s
ratio and the ratio between crack speed and shear-wave speed. The values of these dynamic factors are obtained
for large range of crack speed and the difference can clearly be determined from the results obtained.

A study is made for the propagation of a crack at a constant acceleration. The quantities similar to those
obtained for the above constant-speed crack are also obtained. The deviations of crack-shape and stress-
intensity factors from the associated static state are relatively smaller for an accelerating crack than for a constant-
speed crack propagating at the same speed.

1. INTRODUCTION

A CRACK was observed to be growing from rest at a varying velocity [1, 2]. Theoretical
investigations on crack dynamics were recently carried out by a number of workers [3-5,
13-19]. An exact solution was obtained by the author for a penny-shaped crack propa-
gating at a constant speed in an infinite elastic solid [4]. The solution obtained by Broberg
[5] for a constant-speed plane crack met the condition of vanishing normal acceleration
instead of directly satisfying the usual condition of vanishing normal displacement in the
crack plane.

Using the techniques developed in an earlier paper [4], the problem for a brittle plane
crack propagating at a varying speed is considered in the present work. The crack is
assumed to be propagating along its own plane. Laplace and Fourier transforms are used
to solve the equations of motion and satisfy the dynamic boundary conditions. For a
constant-speed crack, the crack shape and the stress distribution in the crack plane are
explicitly obtained in exact expressions easily comparable to the associated static solutions
[6]. The dynamic “‘stress intensity” functions are obtained in terms of crack speed, wave
speeds and Poisson’s ratio. Solutions for quantities mentioned above are also obtained
for an accelerating crack. Comparisons are made between the results for constant-speed
and accelerating cracks.

2. CRACK OF ARBITRARY SPEED

Consider a two-dimensional elastic solid subjected to equilibrate, symmetrical tensions
o(x) at infinity. A crack starts to propagate at t = 0 with a varying speed and has length
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2a(t) in a plane, y = 0 perpendicular to the direction of tension. Solution of the problem
can be obtained by superposition of the tension field o{x} and the stress fields set up by a
pressure —o{x) acting on the crack surfaces. The latter problem is the main subject of
interest in the present work. The dynamic boundary conditions concerned can be pre-
scribed as on the crack plane y = Ofort > 0

0y =0 (1)
and

wix, t), x < a(t

o { (x, 1), x < a(t) 2

0, x > a(t)
where v is the vertical displacement normal to the crack plane and w(x, f) is an unknown
crack-shape function to be determined later. The equations of motion to be satisfied for

a homogeneous, isotropic solid are
2

(A4+2WV(V . u)—uV x(Vxu) = o

()

where the displacement vector u has the horizontal component u and the vertical com-

ponent v; A and u are Lame’s constants and p the density of the medium. The dilatation is
du Ov

A=V.u=g+@ (4)

and the only nonvanishing component of the rotation is

dv Ju
= ———, 5
dx dy )
Equations of motion (3) are satisfied if the following two wave equations are satisfied :
1 %A A+2u
2A 2 _
VA = a7 c3 . (6)
and
1 3*Q i
20) = o o 2 =L, 7
V Q C% 6[2 3 C2 p ( )

To solve the equations, Laplace transforms f*(p) are operated over the time ¢. Further-
more, Fourier cosine or sine transforms are applied over x and defined as

f J‘ cos 5%)
8
s1n(sx) dx. ®)
Proper transformations reduce equation (6) and equation (7) to simple ordinary equations
of y. Their solutions, with vanishing values at infinity, are found as

A*=Ae ™™ and Q*=Be ® ©)
where
a? = s 4k32, B = s*+k3,

(10)
ky=p/e;, and k, = pjc,.
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The transformed equations for displacements and stresses are found as
o

2
PP+ = —k*sB¥ -
2 aRY |
PP 5r = RS

G = AA* 4 2usu¥

and
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(15)

where k? = k2/k? = 2(1—v)/(1—2v) and v is Poisson’s ratio. Satisfying boundary con-

ditions (1) and (2) yields
—oak?A+sB = ﬁejw;*
U
and
2ak*sA —(B*+5s%*)B = 0.
Solutions of (16) and (17) are

252+ k3 _,
ek f

A::

and
B = —2sw¥.

The transformed stress G5, on the crack plane can now be calculated to be

5 = __11_(232+k§)2-4szaﬁw*
cTyy k% a (4

= —pky[ky/a+ F*(s, p)]w,
where

ds*(s* + k3 —ap)

F*(s,p) = ak?
2

(16)

(17)

(18)

(19)

(20)

21

The expression for G}, in equation (20) is the same as that for the similar normal stress in
the earlier paper [4]. After a proper contour integration, the Laplace inversion of equation
(20) is the same as that for the similar normal stress [4]. The inversion is then operated upon

by Fourier inversions to obtainon y = 0

g,(x, 1) = Ugy"chQ1 —ul,Q,,

22)
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where
2 QO
o), = —K\/J cos(sx)sw, ds (23)
0, —\/ f cossxa fJ (sc, w drds (24)
and
2 20 t a _
0, = \/J cos(sx)sf cos(scyn(t — 1))=—w, dt ds. (25)
nJo o ot

The constant K is defined as K = u/(1 —v) = E/2(1 —v?). The operator L, resulting from
contour integration is defined in Appendix A, and operates over x in equation (25) [4). The
first term a , in equation (22) will soon be shown to be in the associated normal stress for
a static crack The second and third terms apparently account for the effect of stress waves.
Equation (22) will result in an integral equation for the unknown w(x, t). The value of 5,
is known as a(x, t) for x < a(f), but is unknown for x > a(t). The value o(x, t) will be used
to determine the unknown function w(x, t). To solve for the dynamic crack-shape function w,
the associated static crack-shape function w® will first be determined from equation (22) by
dropping the last two wave integrals in equation (22). The reduced equation becomes
2K

a
0, = —— | cos(sx)s f w? cos(sm) dm ds
T Jo 0

K o) a 0
- 2—f cos(sx) f W in(sm) dm ds. (26)
T Jo o Om

The condition that the crack tip has vanishing normal displacement is used in equation (26),
ie. w%a, t) = 0. To solve for w(x, 1), the variable x is first changed to A in equation (26), and
the equation is then multiplied by the function (x? — A?)~* with square-root singularity and
finally integrated over 4 [4]. Since g,, = ¢ for x < g, the following integrals are obtained
from equation (26):

odi ow® 2 ow® 1
=K =K —— .
f \/ i) f J Jo(sx) sin(sm) ds dm = J Jm =3 dm. (27)
A further integration over equation (27) as indicated y1elds
ndn gdi

0,
R « NP =x2) o (P =27 (28)
This is a general expression for the associated static crack-shape function produced by a
prescribed crack pressure g. For the special case of a uniform crack pressure,ie.,g,, = —p,
for x < a, the crack function will be integrated out from equation (28) to be the same as
that for a static crack [6]. If the operations on equation (28) are applied to equation (22),
the dynamic equation for w(x, t) is obtained from (22) as

2 (* ndn "pcQy+ul,Q,
dA dn. 29
2K N =xD )y JmE =217 (29)

This is a general equation to determine w(x, t) for a prescribed crack pressure . If w is
determined from equation (29), the results may be substituted into equation (22) to obtain

w(x, t) = wo(x, t)—
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the normal stress o, (x, ). The other nonvanishing stress o, on the crack plane can be
obtained by using the same procedures as that for ¢,,. The transformed solution is found as

C&:x=£2 452(52+k§—a/3)_ v k_‘z‘ . (30)
k3 o l—v «

The procedures used for inverse transforms of equation (30) are similar to those for G,
The results obtained are

12

Oxx = o'gx_l_Plel—#E1Q2 (31)

—V
where the associated static stress is identical with agy in equation (23), i.e.,
Oy = 0o (32)

The new operator L, that resulted from inversions is defined in Appendix A. The ex-
pressions and intervals of integration in the operators L, and L, are similar to those
obtained for vertical displacements [7-10]. All the equations (22), (29) and (31) are written
as sums of associated static expressions and wave-effect integrals for an arbitrary sym-
metrical pressure o(x, t). If the integrations involved can be carried out, a clear comparison
can be made between dynamic and static quantities. In all the above calculations, the
constancy of crack speed is not required ; therefore, the results are valid for both constant
and varying crack speeds. In the following sections, results for a constant-speed crack are
obtained in closed forms and solutions for an accelerating crack are also obtained.

3. CONSTANT-SPEED CRACK

Closed-form solutions are obtained if the crack is assumed to propagate at a constant
speed V with uniform pressure — p, on the crack surfaces. To obtain the solution, a method
of successive approximation is used [4, 11, 12]. The first term on the right-hand side of
equation (29) gives the first approximation of w(x, ). Thus, for the uniform pressure
prescribed, we have

wiix, 1) = wo(x, 1) = %\/(az—xz). (33)

This is precisely the shape of an associated static crack [6]. To obtain the next approx-
imation of equation (29), integrals (24) and (25) have to be carried out. From equation (33),
the time derivative of the cosine transform w® is found as

0 _ Po /T )
wa = EO \/ EJ(,(sa)aa (34)
where the dot means differentiation with respect to t. If the following identity is used:

Jolsc (t—1)] = % f sin[sc, cosh &(t —1)] d& (35)

0
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the first approximation of Q, in equation (24) for x < a in terms of w' is found as

01 = 72[1;2 6tf J f cos(sx) sin(sc, cosh &(t —1))Jo(sa)aa ds dt d¢

=% atf f f {sin s[c, cosh &(t — 1)+ x]
+sin s{c, cosh &(t —1)— x]}Jy(sa)ad ds dr d&

=£°._j f{G H[c, cosh é(t—1)+x—a]

nK ot
+G,H|[c, cosh &t —1)— x —a]}taa dr d& (36)
where H is the Heaviside function and the wave functions are
Gslcosh &, x, t) = {[c, cosh &(t—1)+x])*—a?} ~* (37
and
G,(cosh &, x, 1) = {[c, cosh &(t—1)—x]*—a®} "% (38)

For a crack of constant speed V as prescribed, @ = V and a = V1. The integration of the
first term over T in equation (36) may be written as

J‘“ Gyrdr = Jm [(c tcosh E+x)—(c, cosh&é— V)] ¢
0

0
.[(cqt cosh E+x)—(c, cosh &+ V)] *rde (39)
where the upper limit of integration due to H is

_cytcoshE+x

= . 40
fa cicoshé+V “0)

Using formula (a) in Appendix B, equation (39) can be integrated explicitly. The second
term in equation (36) can similarly be integrated out with the upper integration limit as

¢ tcosh &—x
=——— 41
T2 c,coshé+V “1)

The above integrations followed by differentiation with respect to ¢ of equation (36) give
14
Qi =D, (42)

where the constant D, is defined in Appendix C as a function of v, = V/c,.
Similarly, the first approximation of Q, in equation (25) for x < a is found as

Q)= 2p—10( x f f {sin s[c,n(t — 1)+ x] —sin s[c,n(t — 1) — x]}Jo(sa)aa ds dt

2K x {f G;(n, x, tyaa dt —f G,(n, x, t)aa d‘c} (43)
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All the functions such as t,, t,, G; and G, are respectively equal to the corresponding
functions 7,, t,, G, and G, if cosh ¢ is replaced by #. This convention will be applied
hereafter. The above equation can further be integrated as before to be

Pop, (44)

LlQi = K

where the constant D, is defined in Appendix C in terms of the velocities ratio v, = V/c,.
If equations (42) and (44) are substituted in equation (29), the second approximation of w
is found as

wi(x, t) = w'[1—g] (45)
where the dynamic correction constant is
e = (1—v)(k?D,+ D). (46)

If the successive approximations continue, the solution for w from equation (29) results
in an infinite series and can be written in a closed form as follows:

wix,t) = wl(x, t)(1—e+e2—&3+..))

0
(x t) Po
= 47
l+e \/ “7)
where the dynamic constant is
K, = K(1+5). (48)

If crack speed V tends toward zero, the dynamic correction term ¢ vanishes. Therefore, the
crack-shape function (47) reduces to that for a static crack.

The exact expression for w in equation (47) may be used to determine the stress distri-
bution in the crack plane. To find the normal stress in equation (22), the cosine transform
of w is found as

W, = I’; ‘; \/ > <Ji(sa). (49)
The associated static normal stress in equation (23) is found in terms of w, as
o, = ——l-p_%aa J;) cos(sx)J,(sa) ds. (50)
This is integrated out as
Po forx <a
o 1+¢
Oyy = (51)

Po X
1+£l:\/(x2—a2) 1:| for x > a.
When the value of ¢ tends to zero for vanishing V, equation (51) reduces to the same static
normal stress as that found through a different process [6]. The values for the wave-effect
integrals Q, and Q, in equation (22) for x < a are respectively equal to Q1 in equation (42)
and Q} in equation (44) if K is replaced by K. In terms of these values, the normal stress o,
completely recovers its prescribed value — p, for x < a. If the procedures similar to those
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in equation (36) are used, the integral O, for @ < x < ¢,t is found as

a A i 153
Q, = Po © f {f G,{cosh &, x, t)aa dt +J- G,(cosh &, x, taa dt
0 0

nKp oty
r
—J G,(cosh &, x, t)aa dr} dé (52)
where
G,(cosh &, x,t) = {[x—c, cosh &(t—1)]* —a®} % (53)
and

, _ ¢cptcosh {—x

1= c,coshE—V’ (54)

All the integrals in equation (52) can be reduced to the forms in Appendix B and integrated
out explicitly. After a lengthy calculation, the results can be written as

Dot x
Ql = K(;klz{Dii(Vj(xz_az)— 1) +Q12(X’ t)} (55)
where
B Jle?t? cosh? € — x?)[1 + F(cosh &, v,)]
Qraltt) = L l"{ x + F(cosh £, v,)\/(x*—a?) (56)
The function used is
F(cosh &,v,) = cosh &cosh? & —p?) ™2, (57

The dynamic constant D5 is defined in Appendix C whereas the operator L, over ¢ is
defined in Appendix A. The integral @, in equation (25) for a < x < ¢,t may be written by
the similar procedures used in equations {36) and (43) to be

0,="r0 2 f G, x, ad dt — j G,n, x, tad dt + f G, x, Daadts  (58)
2Kp 0x {Jo 0 )

where t] is equal to 7} in equation (54) if cosh £ is replaced by #. Integral (58) has situations
similar to those for equation (52) and is integrated out explicitly to be

L0, = ﬁ%{u(%xfa—)— 1) +0ailx, t)} (59)
where
2,2.2 2
0,, = Ly In V(e n® —x*)[1 + F(y, v,)] (60)

X+ F(n, v,)\/(x* = a?)
The dynamic constant D, is defined in Appendix C whereas the operator L, over # is
defined in Appendix A. If equations (51), (55) and (59) are substituted in equation (22), the
normal stress on the crack plane for a < x < c,t is obtained as

1-—
Ty(X, t = pg {Km(%isz)“ 1) —%?(Q;z +Q22)} (39
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where the dynamic “‘stress intensity”” correction factor in the cleavage plane is
K, = [1=(1—=v)(D3+D,)/[(1+¢). (62)

The dynamic stress intensity factor is equal to the above constant multiplied by the
associated static stress intensity factor, e.g., K, po/(na). The stress o, in equation (31)
can also be obtained if the procedures for determining o, are followed.
1+vk*D,+(1—v)D
—Po l D2 for|x| < a

1+¢
= (63)

po{K}u[h~1]—[vQ12+<1—v)Qn]/(1+s)} fora < |x| < ¢t

where the dynamic “‘stress intensity™ correction factor in the noncleavage plane is
K}, = [1=(D3+(1 =)D}/l +ze). (64)

The above functions D,, D, and Q,, are respectively equal to D,, D, and Q,, if L, in the
operators involved is replaced by L, . If the crack speed V tends to zero givingv, = v, = 0,
the stresses ¢, and o, simply reduce to their corresponding static stresses [6].

4. ACCELERATING CRACK

The integral equation (29) for determining w(x, t) holds for a crack propagating at a
varying speed. Therefore, it is good for a crack which starts to propagate at t = 0 with a
constant acceleration y. This condition gives a crack speed V = yt and a half crack length
a = yt*. To solve for w in equation (29), the previous method of successive approximations
will be used. The first approximation of w is exactly the same as that in equation (33).
Consequently, equation (36) also holds. However, the wave functions G, and G, are here
different from the previous functions of 7. Under the present condition, equation (38) leads to

G; *(cosh &, x, t,1) = z,(cosh &, x, t, T)z,(cosh &, x, t, ) (65)
where
2z, = ¢, cosh &(t—1)—x+a(1)
1 (66)
= (1t )(t—ty)y/2
and
z, = ¢, cosh &(t—1)—x—af(r)
1 (67)
= (L) (T —t)y/2.
In the above equations, the roots of z, and z, are
t
I = {£/[c} cosh? &—2y(c, cosh & — x)] + ¢, cosh &} /y (68)

4
and

tzl = {+./[c] cosh? £+2y(c, cosh é&t —x)]— ¢, cosh &}/y. (69)
t

2
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field, i, which is a function of the state variables defining the system and their time deriv-
atives. With the aid of the governing differential equations of motion, the integral of
over the domain is then evaluated to first order in the functional neighborhood of the
steady state. It is then possible to separate the time differentiation from the integration,
obtaining

Jq‘/dv——<0

where @ is termed a local potential and is in the nature of a generalized rate of entropy
production. For Beck’s problem, ® may be defined as

1 62 820 520 50 620
wmm%mj‘{wf—5+F +y o +ma;m}m
0

ox? ox* axz
s0 that
5 = J* (?4 u° 3y 0+}5;0+mazu0) Sudx.
Therefore,
o0 =0

when

*u Pu  du u

5}7‘+58_xi+y5+m5t—2 =0
with

0,0 Pu(ln _ ul,o

ox  ox: - éx? =0

u0,t) =

The above is obtained with an a posteriori subsidiary condition
u=u’
Further, if @ is to be employed to form a basis of approximate solution, we may consider

u =73 a(t)p,(x)
u® =3 a(e,{x)

where ¢,(x) are trial functions satisfying ¢(0) = ¢{0) = ¢"(1) = ¢"(1) = 0. This set of
trial functions when substituted into the local potential ® and minimized with respect to
a, yields with the subsidiary condition

{al0)} = {a, (1)}

a system of linear, ordinary, differential equations for a,(t). This system of equations is the
same as that when the Galerkin method is used directly to obtain an approximate solution
of the equation of motion of Beck’s problem.
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where
zy = ¢y cosh &(t—1)+x+alr
3= ¢y {t—1) (®) (74)
= (t3—)(t3—1)y/2
z4 = ¢, cosh &t — 1)+ x —a(r)
i=c N -
= (=)t —t4)y/2
t
® = [+ [} cosh? £~ 2y(ct cosh & +x)+c, cosh £)/7) (76)
I3
t
‘: = {+./[c? cosh? &+ 2y(c,t cosh &+ x)— ¢, cosh £)/y}. (77
g3
The first term in (36) may now be written as
I,= f G;Haadrz
, (78)
=7 J‘ (t4—T)—%T2(T, IS? t;a t;-) dt
Q
where
TZ = Tl(ra ti, tllh t,}) (79)
Following the procedures similar to those for I,,, equation (78) leads to
al,, J"' [0 T, 8T,
- —) 22 . 80
o ) G T G tara | (80)

The integrands in equations (72) and (80) are smooth, regular functions of = with vanishing
values at both limits of integration. Physically speaking, the stress waves generated by frac-
turing immediately attain the speeds ¢; and ¢, while the crack propagates with a relatively
small beginning speed yt. This leads to the situation that the crack size soon becomes small
compared to the size of wave fronts. Therefore, it is plausible to assume x/c,;tcosh & « 1
for x < a(r). Under this assumption, the values in equations (68) and (69) become

t; =2c,coshé/y—t,tl =1t
1 1 1 (81)
t,=t and t}= —(2c,coshé/y+1).

In terms of the above quantities, the value of the integrand at the middle of the integration
interval can be calculated. If a three-point parabolic method of integration is used, the
integral (72) is evaluated as shown in Appendix D. If the similar procedures are used, the
value of (80) is found as dI,,/0t = 81,,/6t. In terms of these quantities, the first approx-
imation of @, for an accelerating speed is found as

o, =Dy, (32)

where the constant D, is defined in Appendix D.
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The integrals of wave functions for the first approximation Q, as in equation (43) can
similarly be written as

t2 ts
121 = J Gzad d‘C = 'VJ (tz—t)_%Tl(r’tlati’t;) dT (83)
0

0

and

ta ta
I,, = f Giaadr = yf (ta—1) T ,(x, t5, t, t1) dr. (84)
0 0

Integrations by parts of equations (83) and (84) followed by differentiations give

a1, f*z Fot, T, o°T,]

22 ) t, -1 =2 ! d 85

0x N (t:=7) | 0x ot 0x 0t ‘ (83)
and

oI5, f” rat4 0°T, 62T2_

——= =2 t,— 1) dr. 86

P N O =y v (86)

The expressions for the differentiations of T, and T, are given in Appendix D. Under the
assumption x/c,tn « 1, 8I,,/0x is similarly calculated as shown in Appendix D and it is
found that d1,,/0x = —3dI,,/0x. In terms of these values, the first approximation of Q,
as in equation (44) becomes

p
030 = 2Dz (87)

where the constant D,, is defined in Appendix D. Both D,, in equation (82) and D, in
equation (87) are independent of x and t. It can now be seen that the successive approx-
imations of w in equation (29) lead to an infinite series similar to that in equation (47).
Therefore, the crack shape for an accelerating crack can be written as in equation (47) as

Wlx, 1) = Iﬁj)/(az —x?) (88)
where
Kp, = K(1+¢,) (89)
and
g, = (1—v)(k*D,+ D5,). (90)

To find stress intensity factors and stress distribution around the accelerating crack
tips x > a(?), the integral Q, similar to that in equation (52) is first considered. In view of the
regions of integration shown in Fig. 1 for an accelerating crack, the integral Q, for x > a
can be written from equations (52), (65), (68), (69) and (73) as

_ b (7 oli, 51{1_6113
Ql"—nK,,‘,f0 [ar "o A d¢ ®D
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where
H=v| (ta=1) T de 92)
0
Iil = ftz (tz“T)—%Tl dr (93)
0
It = f(r—t,) 4Ty d 94)
and
Ty = Ot - D)e—ty)(t—th)] . 95)

All the three terms in equation (91) implicitly involve singularities. To obtain stress intensity
factors, these singularities should be explicitly brought out. If each integral in equations
(92)194) is first integrated by parts, then is differentiated with respect to time, and finally is
integrated by parts again, the results obtained show explicit singularities at x = a in the
following two equations:

oI, §6t46T2 f 0. @°T, 0T,
L T OB 4 |- T2 e (96)
o, AT, [ Jor T, 8T
o = Suthl-nyosor- 2”1;(_“) Tt o2 T | OD
and
e 2 o1, T, O°T,
ot ‘2”f0 (t2=7) [6[ o Taae | 4T ®8)

where the singularities at x = a in equations (96) and (97) are

ot
Si2= 1-;})%(&ts,té,ti)(trt)‘*
99)
_ |y ) va
B ot |/(x*—a?)
and
ot!
Sl3 = l_a_tl)yT:i(t’ tl’t29té)(t_ti)_%
(100)
- gy va
B 6t)\/(x2—az)
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The integral @,, for x > a may be obtained by applying the similar procedures for @,, to
equation (58). The results may be written as

P 0l3, ol alés
Qa0 = 2KD,,[ ox  Ox + ox (o)
oI}, ¢ " -4
'5;" = yé;J; (t4-—T) T2 dt
= S5, =2t —z)%--a-"‘;%ﬁ;tig—zf—»zrf(t | e 0L O o
T T TI o Tax a |TT L N T B e Tarax |
and
ol (0T, ot! dT, | oty °T 62T
a;ﬁ = S, +2(t—t})} “a’xiﬂa“x[‘ af -2y r—z,)f[ L 3] dr (103)
where the singularities at x = g are
Oty -3 (Ot /O0x)Va
= —p—(t,— = e 104
S22 Vax(ta, )T, \/(x — (104)
and
- {0t}/ox)Va
Sa3=— t) T, = \/(_)lc:;i) (105)

If equations (51), (91) and (101) are substituted in equations (22) and (31), the resulting
normal stresses o, and o, can be written as sums of singular terms and regular functions
which can be calculated numerically for various values of x and ¢. The stress intensity factors
are obviously concerned with these singular terms. In the cleavage plane, the dynamic stress
intensity correction factor obtained from equations (22), (51), (91) (101) and (62) can be
written as

K, = 1+¢

= K;,. 106
a 1+8a Iv ( )

The dynamic stress intensity correction factor in the direction normal to the crack plane
is found from equations (31), (32), (51), (91), (101) and (64) as
1+¢
K;, = ——K} 107
Ia 1 + Iv- ( )
The dynamic stress intensity factors in the cleavage and noncleavage planes for an accel-
erating crack are respectively equal to the above two constants multiplied by the associated
static stress intensity factors such as K,,pona and K} pona.

5. DISCUSSIONS AND CONCLUSIONS

Exact expressions are obtained for the stresses and the crack shape in the plane of a
crack which propagates at a constant speed V. The value of the dynamic correction factor
(1+¢)~* for the crack shape in equation (47) is calculated by using an electronic computer
for v = 0-25 and various values of V/c,, as shown in Fig. 2. In the same figures, the curves for
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the dynamic stress intensity factors K,, and K}, are also shown as a function of V/c,.
The calculations of the above curves involve the operators L, and L, as defined in
Appendix A. These operators have singularities at # = k which are removed during com-
putations by introducing the transformation n2 = (k% — 1) cos h*6+ 1. In terms of the new
variable 6, the integrals of the operators become regular and can be evaluated by a regular
four-point integration method in the computer. The terminal crack speed for brittle
materials was found to be V = 038 (Efp)* = 0-6 ¢, for v = 025 [13]. For this crack
speed, w/wg = (1 +¢)~' = 0724 as seen in Fig. 2. In other words, the deformation at the
surface of a dynamic crack running at its terminal speed is 27-6 per cent smaller than the
corresponding static crack deformation.

The normal stresses o, and ¢, in the plane of a static plane crack were found to be
identical and a state of hydrostatic tension was shown to exist in the crack plane [14]. This
is a limiting case of the current result which is obtained by letting V = 0 in equations (61)
and (63). If the speed V differs from zero, the values of K, and K}, are different as seen in
Fig. 2. Therefore, the state of hydrostatic tension ceases to exist, once the crack propagates.
The value of K, shown in Fig. 2 decreases with increasing ¥/c, and becomes zero at ¥ =
0-92 ¢, which is the Rayleigh wave speed for v = 0.25. This value may be suggested as the
maximum possible value of the crack speed. The value of K}, is consistently higher than K,
It first decreases for small V/c, and increases back to a relative high value for large V/c,.

The crack shape and the stress distribution in the region small compared to the wave
fronts are obtained for a crack propagating at a constant acceleration. The values of
dynamic corrections factors such as (1 +¢,)" %, K, are obtained as shown in Fig. 2. These
values are consistently higher than their corresponding values for a constant-speed crack.
In other words, the deviations of stresses and deformations from the associated state state
are smaller for an accelerating crack than for a constant-speed crack propagating at the
same speed V.
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APPENDIX A

Operators

l

8 k
L, cos(scynt) = . j- (n*— ~3 cos(sc,nt) dn
1

8 © 1 i
+;f H=n+k 2= 12" — D)¥n (k=2 — 1)~ cos(sc,ni) dn
k
_ 8 [
L, cos(sc,nt) = ;J %k =2 = 1=’k =2 = 1)¥n* — ¥y~ *(n*k™ > —1)"* cos(seynt) dy
k

8 * x .
- J (n*—1)*n ™7 cos(sc,nt) dn
1

2™ wvjcosh?¢
L2 :f(COSh 5) = ;C_L m:}t(COSh f) dé

v [
Lfm=t, TR fa

APPENDIX B

Formulae for integrations
T2 Tdt

{a) F, = . m’ﬁs d>b

Leté = Jla—dt),E =& att=1,,&=&atT = 1,.

2 d+b
F, = 3\7(777){ ——In(&+/[ §2+a(d/b-—1)]—~\/[€2+a(d/b—I)J}LZ
! ‘cdr
(b) F> = Ld\/[(br—a)(dr—a)]’ b=

Let ¢ = /(dr—a), & =oatT =1

2 &o

( d)
Fa= T dJbd)|2

{ VI +a(l —d/b)] + 1 (é+\/i§2+a(1—d/b)}}
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APPENDIX C

Dynamic constants
v, = V/e,

vy = Viey

2 (* coshév? cosh £ —v, cosh & +v,
=2 o cosh et +
D zJo (coshzévf)’{ cosh ¢ n[\/( 2, 2v,

~(cosh? ¢ vf)*‘} d¢

B v} n—0, H+oad b 5 o
o=t e ) 5] e

g =(1-) (k2D +D,)

2 (* vicoshy
D, =~ —_— =pi -3 ¥
3 nfo cosh? y—v? y 2l 1)
2
V3
D,=1L
e = br s

APPENDIX D

Functions for accelerating crack
Zi(n sty ty) = [r—1)(, - -]

Yoty 5},3;.) =, —1)" ! “*"(ti -7)7! ‘“('5‘“5;.)_1

%T,
“a‘;il' = 7(6+1Y;,)(1 _TYHM)ZM'{"Tz[té(f‘“t%)”z+51(I1“T)_z‘*‘f%(ti_f)_z]znilz
*T, t? at, S0 oy 0 =1
Bror “‘1‘(6*‘7}’11)211[5(!1“1) +'é;‘(31“"5) "07(7‘?2) ]
ot _, ot} _, ot} -

““Tzu[—a“;'(fn—f) T =0T ) }
ol .
w‘-a—;——'— = ¢,0}(69 ~97v,/cosh y— 53v%/cosh? y+223v3/2 cosh? y

+2623v%/256 cosh* y — 10657v3/256 cosh® y)(1 —9v2/16 cosh? y)~%/48 cosh y
*T, ¢ ot, S, o, et et
axdr “2(64‘71’11)211[5“1_1) '*'5;“1”77) “&(T_tz) :l

ot _, ot _, ot _
R R CERRI T
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1
% = —v2(69—97v,/n— 53v3/n* +223v3/2n> + 2623v%/256n*
x
—10657v5/256n°)(1 —9v3/16n%) " 1/48y*
2 r>al
D,=—| —Yd
T e Jo ot ¢
ol
D,, = —L, ail'
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AGcerpakT—ITony4aroTca MHTErpasibHbie PELUEHMs] A1 CUMMETPHYECKOM TPEILUMHBI, KOTOpas PacHpocT-
PAHSIETCA C U3MEHSIOLLEHCH CKOPOCTBIO B YIPYTOM TBEPAOM TeJi€, MO BIUSHUEM OEHCTHUBA NPOU3BOIBHOIO
CMMMETPHYECKOTO NABJIEHUS Ha TPELUMHY, B BUOE CYMMBI IPUCOEIMHEHHBIX CTATHMYECKMX DEUIEHWH H
WHTErpasioB BoONHbBI HampsokeHusi. Mccnepyrotes moapobHo asa cnydas. [ coydas CUMMETPHMYECKOMH
TPELIUMHbl, ABMKYLUEHCH ¢ TMOCTOAHHON CKOPOCTBIO, TMOA BJIMSHHEM IOCTOSIHHOTO [aBJIEHHS, NalOTCS
TOYHbIE JUHAMUYECKHE PEILCHUSA B 3AMKHYTOM Bule 111 GOPMBL TPELLUHBI M PACIIPeaeIeH s HAIPKEHUH ¢
CHUHTYJIAPHOCTAMM B [UIOCKOCTM TPELIMHBI, YTO [JAaeT BO3MOXHOCTb CPABHCHUS C TIPUCOCAMHEHHBIMH
CTaTHYECKUMH pelllenusimu. Omnpenensercs pa3HULA MEXAY NHHAMMYECKUMM M CTATHYECKUMHU PELLCHUSIMHU,
QIS BEJIMYUH TaKHX Kak (opMa TPELIMHbI U (AKTOPbI MHTEHCUBHOCTM HANpsiKeHWH, nyreM ¢akTopos
IMHAMMYECKOH monpaBku. DTu GakTopbl MPEACTaBIAOT coboi Ge3pazmepHbie QyHKUMH KO3hduLmMeHTA
IlyaccoHa M COOTHELUEHUS MEXAY CKOPOCTSAMM TpelLUMHbI u BOJNHBI ¢caBura. Ilony4yaroTcs 3HaAYEHUs1 ITHX
JIMHAMHUYECKUX HaKTOPOB A5 LIMPOKOTO fIpefieia CKOpOCTH TpellHbl. Ha ocHOBE mony4eHHbIX pe3ybTaTOB
MOJXHO JIETKO ONpEAeNuTh Pa3HULy.

IpuBoAUTCS MCCAEAOBAHME JI PACIPOCTPAHEHUS TPELUMHBI C TMOCTOAHHBIM YCKOPDEHHEM. 3areM,
MOJIYYaI0TCs MOAOOHBIE BEJIMUMHBI K TAKHUM-)XKE, ONPEACIEHHBIM AJISl yKa3aHHOM BBILIE TPELUWHBI C TOCTOAH-
HO#M ckopocThio. OTKOHeHUs PAKTOPOB GOPMBI TPELUMHBI H MHTEHCHBHOCTH HaNPSiaXXe€HMil OT IpUcOenu-
HEHHOTO CTATH4ECKOrO COCTOSHMS OKa3blBAETCHA, OTHOCUTEIIBHO, MEHBLUMMM JIAS TPELIMHBI C YCKOPEHHEM
IO CPABHEHHIO C TPELMHOIA C TTOCTOSIHHON CKOPOCTBIO, ATIS PACIPOCTPAHEHHUSA C TAaKOH Xe CaMO#i CKOPOCTBIO.



